Quantum-chemical insights from deep tensor neural networks
نویسندگان
چکیده
منابع مشابه
Quantum-chemical insights from deep tensor neural networks
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observabl...
متن کاملLarge Vocabulary Speech Recognition Using Deep Tensor Neural Networks
Recently, we proposed and developed the context-dependent deep neural network hidden Markov models (CD-DNN-HMMs) for large vocabulary speech recognition and achieved highly promising recognition results including over one third fewer word errors than the discriminatively trained, conventional HMM-based systems on the 300hr Switchboard benchmark task. In this paper, we extend DNNs to deep tensor...
متن کاملInsights into deep neural networks for speaker recognition
Traditional i-vector speaker recognition systems use a Gaussian mixture model (GMM) to collect sufficient statistics. Recently, replacing this GMM with a deep neural network (DNN) has shown promising results. In this paper, we study a number of open issues that relate to performance, computational complexity, and applicability of DNNs as part of the full speaker recognition pipeline. The experi...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملLearning from LDA Using Deep Neural Networks
Latent Dirichlet Allocation (LDA) is a three-level hierarchical Bayesian model for topic inference. In spite of its great success, inferring the latent topic distribution with LDA is time-consuming. Motivated by the transfer learning approach proposed by Hinton et al. (2015), we present a novel method that uses LDA to supervise the training of a deep neural network (DNN), so that the DNN can ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/ncomms13890